- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Kambhampati, Shrikaar (2)
-
Allen, Doug K (1)
-
Allen, Doug K. (1)
-
Arp, Jennifer J (1)
-
Aznar-Moreno, Jose A (1)
-
Aznar-Moreno, Jose A. (1)
-
Bailey, Sally R (1)
-
Bilyeu, Kristin D (1)
-
Chu, Kevin L (1)
-
Chu, Kevin L. (1)
-
Duressa, Dechassa (1)
-
Durrett, Timothy P (1)
-
Durrett, Timothy P. (1)
-
Koley, Somnath (1)
-
Morley, Stewart A. (1)
-
Mukherjee, Thiya (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In developing soybean seeds, carbon is partitioned between oil, protein and carbohydrates. Here, we demonstrate that suppression of lipase-mediated turnover of triacylglycerols (TAG) during late seed development increases fatty acid content and decreases the presence of undigestible oligosaccharides. During late stages of embryo development, the fatty acid content of soybean seed decreases while the levels of the oligosaccharides raffinose and stachyose increase. Three soybean genes orthologous to the Arabidopsis lipase gene SUGAR-DEPENDENT1 ( SDP1 ) are upregulated at this time. Suppression of these genes resulted in higher oil levels, with lipid levels in the best lines exceeding 24% of seed weight. In addition, lipase-suppressed lines produced larger seeds compared to wild-type plants, resulting in increases of over 20% in total lipid per seed. Levels of raffinose and stachyose were lower in the transgenic lines, with average reductions of 15% in total raffinose family oligosaccharides observed. Despite the increase in oil, protein content was not negatively impacted and trended higher in the transgenic lines. These results are consistent with a role for SDP1 in turning over TAG to supply carbon for other needs, including the synthesis of oligosaccharides, and offer new strategies to further improve the composition of soybean seeds.more » « less
-
Kambhampati, Shrikaar; Aznar-Moreno, Jose A; Bailey, Sally R; Arp, Jennifer J; Chu, Kevin L; Bilyeu, Kristin D; Durrett, Timothy P; Allen, Doug K (, Plant Physiology)Abstract The negative association between protein and oil production in soybean (Glycine max) seed is well-documented. However, this inverse relationship is based primarily on the composition of mature seed, which reflects the cumulative result of events over the course of soybean seed development and therefore does not convey information specific to metabolic fluctuations during developmental growth regimes. In this study, we assessed maternal nutrient supply via measurement of seed coat exudates and metabolite levels within the cotyledon throughout development to identify trends in the accumulation of central carbon and nitrogen metabolic intermediates. Active metabolic activity during late seed development was probed through transient labeling with 13C substrates. The results indicated: (1) a drop in lipid contents during seed maturation with a concomitant increase in carbohydrates, (2) a transition from seed filling to maturation phases characterized by quantitatively balanced changes in carbon use and CO2 release, (3) changes in measured carbon and nitrogen resources supplied maternally throughout development, (4) 13C metabolite production through gluconeogenic steps for sustained carbohydrate accumulation as the maternal nutrient supply diminishes, and (5) oligosaccharide biosynthesis within the seed coat during the maturation phase. These results highlight temporal engineering targets for altering final biomass composition to increase the value of soybeans and a path to breaking the inverse correlation between seed protein and oil content.more » « less
An official website of the United States government
